(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0') → 0'
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0') → 0'
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0', X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0', X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0') → 0'
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0') → 0'
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0') → 0'
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0', X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0', X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0') → 0'
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
Types:
a__terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
cons :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
recip :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
mark :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
s :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
0' :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
nil :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
hole_recip:s:terms:cons:0':nil:first:sqr:add:dbl1_0 :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0 :: Nat → recip:s:terms:cons:0':nil:first:sqr:add:dbl
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
a__terms,
a__sqr,
mark,
a__add,
a__dblThey will be analysed ascendingly in the following order:
a__terms = a__sqr
a__terms = mark
a__terms = a__add
a__terms = a__dbl
a__sqr = mark
a__sqr = a__add
a__sqr = a__dbl
mark = a__add
mark = a__dbl
a__add = a__dbl
(6) Obligation:
TRS:
Rules:
a__terms(
N) →
cons(
recip(
a__sqr(
mark(
N))),
terms(
s(
N)))
a__sqr(
0') →
0'a__sqr(
s(
X)) →
s(
a__add(
a__sqr(
mark(
X)),
a__dbl(
mark(
X))))
a__dbl(
0') →
0'a__dbl(
s(
X)) →
s(
s(
a__dbl(
mark(
X))))
a__add(
0',
X) →
mark(
X)
a__add(
s(
X),
Y) →
s(
a__add(
mark(
X),
mark(
Y)))
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
mark(
terms(
X)) →
a__terms(
mark(
X))
mark(
sqr(
X)) →
a__sqr(
mark(
X))
mark(
add(
X1,
X2)) →
a__add(
mark(
X1),
mark(
X2))
mark(
dbl(
X)) →
a__dbl(
mark(
X))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
recip(
X)) →
recip(
mark(
X))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__terms(
X) →
terms(
X)
a__sqr(
X) →
sqr(
X)
a__add(
X1,
X2) →
add(
X1,
X2)
a__dbl(
X) →
dbl(
X)
a__first(
X1,
X2) →
first(
X1,
X2)
Types:
a__terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
cons :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
recip :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
mark :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
s :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
0' :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
nil :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
hole_recip:s:terms:cons:0':nil:first:sqr:add:dbl1_0 :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0 :: Nat → recip:s:terms:cons:0':nil:first:sqr:add:dbl
Generator Equations:
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(x), 0')
The following defined symbols remain to be analysed:
a__sqr, a__terms, mark, a__add, a__dbl
They will be analysed ascendingly in the following order:
a__terms = a__sqr
a__terms = mark
a__terms = a__add
a__terms = a__dbl
a__sqr = mark
a__sqr = a__add
a__sqr = a__dbl
mark = a__add
mark = a__dbl
a__add = a__dbl
(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__sqr.
(8) Obligation:
TRS:
Rules:
a__terms(
N) →
cons(
recip(
a__sqr(
mark(
N))),
terms(
s(
N)))
a__sqr(
0') →
0'a__sqr(
s(
X)) →
s(
a__add(
a__sqr(
mark(
X)),
a__dbl(
mark(
X))))
a__dbl(
0') →
0'a__dbl(
s(
X)) →
s(
s(
a__dbl(
mark(
X))))
a__add(
0',
X) →
mark(
X)
a__add(
s(
X),
Y) →
s(
a__add(
mark(
X),
mark(
Y)))
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
mark(
terms(
X)) →
a__terms(
mark(
X))
mark(
sqr(
X)) →
a__sqr(
mark(
X))
mark(
add(
X1,
X2)) →
a__add(
mark(
X1),
mark(
X2))
mark(
dbl(
X)) →
a__dbl(
mark(
X))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
recip(
X)) →
recip(
mark(
X))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__terms(
X) →
terms(
X)
a__sqr(
X) →
sqr(
X)
a__add(
X1,
X2) →
add(
X1,
X2)
a__dbl(
X) →
dbl(
X)
a__first(
X1,
X2) →
first(
X1,
X2)
Types:
a__terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
cons :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
recip :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
mark :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
s :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
0' :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
nil :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
hole_recip:s:terms:cons:0':nil:first:sqr:add:dbl1_0 :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0 :: Nat → recip:s:terms:cons:0':nil:first:sqr:add:dbl
Generator Equations:
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(x), 0')
The following defined symbols remain to be analysed:
a__add, a__terms, mark, a__dbl
They will be analysed ascendingly in the following order:
a__terms = a__sqr
a__terms = mark
a__terms = a__add
a__terms = a__dbl
a__sqr = mark
a__sqr = a__add
a__sqr = a__dbl
mark = a__add
mark = a__dbl
a__add = a__dbl
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__add.
(10) Obligation:
TRS:
Rules:
a__terms(
N) →
cons(
recip(
a__sqr(
mark(
N))),
terms(
s(
N)))
a__sqr(
0') →
0'a__sqr(
s(
X)) →
s(
a__add(
a__sqr(
mark(
X)),
a__dbl(
mark(
X))))
a__dbl(
0') →
0'a__dbl(
s(
X)) →
s(
s(
a__dbl(
mark(
X))))
a__add(
0',
X) →
mark(
X)
a__add(
s(
X),
Y) →
s(
a__add(
mark(
X),
mark(
Y)))
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
mark(
terms(
X)) →
a__terms(
mark(
X))
mark(
sqr(
X)) →
a__sqr(
mark(
X))
mark(
add(
X1,
X2)) →
a__add(
mark(
X1),
mark(
X2))
mark(
dbl(
X)) →
a__dbl(
mark(
X))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
recip(
X)) →
recip(
mark(
X))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__terms(
X) →
terms(
X)
a__sqr(
X) →
sqr(
X)
a__add(
X1,
X2) →
add(
X1,
X2)
a__dbl(
X) →
dbl(
X)
a__first(
X1,
X2) →
first(
X1,
X2)
Types:
a__terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
cons :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
recip :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
mark :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
s :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
0' :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
nil :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
hole_recip:s:terms:cons:0':nil:first:sqr:add:dbl1_0 :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0 :: Nat → recip:s:terms:cons:0':nil:first:sqr:add:dbl
Generator Equations:
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(x), 0')
The following defined symbols remain to be analysed:
mark, a__terms, a__dbl
They will be analysed ascendingly in the following order:
a__terms = a__sqr
a__terms = mark
a__terms = a__add
a__terms = a__dbl
a__sqr = mark
a__sqr = a__add
a__sqr = a__dbl
mark = a__add
mark = a__dbl
a__add = a__dbl
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
mark(
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(
n45911_0)) →
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(
n45911_0), rt ∈ Ω(1 + n45911
0)
Induction Base:
mark(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(0)) →RΩ(1)
0'
Induction Step:
mark(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(+(n45911_0, 1))) →RΩ(1)
cons(mark(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0)), 0') →IH
cons(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(c45912_0), 0')
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
a__terms(
N) →
cons(
recip(
a__sqr(
mark(
N))),
terms(
s(
N)))
a__sqr(
0') →
0'a__sqr(
s(
X)) →
s(
a__add(
a__sqr(
mark(
X)),
a__dbl(
mark(
X))))
a__dbl(
0') →
0'a__dbl(
s(
X)) →
s(
s(
a__dbl(
mark(
X))))
a__add(
0',
X) →
mark(
X)
a__add(
s(
X),
Y) →
s(
a__add(
mark(
X),
mark(
Y)))
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
mark(
terms(
X)) →
a__terms(
mark(
X))
mark(
sqr(
X)) →
a__sqr(
mark(
X))
mark(
add(
X1,
X2)) →
a__add(
mark(
X1),
mark(
X2))
mark(
dbl(
X)) →
a__dbl(
mark(
X))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
recip(
X)) →
recip(
mark(
X))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__terms(
X) →
terms(
X)
a__sqr(
X) →
sqr(
X)
a__add(
X1,
X2) →
add(
X1,
X2)
a__dbl(
X) →
dbl(
X)
a__first(
X1,
X2) →
first(
X1,
X2)
Types:
a__terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
cons :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
recip :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
mark :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
s :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
0' :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
nil :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
hole_recip:s:terms:cons:0':nil:first:sqr:add:dbl1_0 :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0 :: Nat → recip:s:terms:cons:0':nil:first:sqr:add:dbl
Lemmas:
mark(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0)) → gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0), rt ∈ Ω(1 + n459110)
Generator Equations:
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(x), 0')
The following defined symbols remain to be analysed:
a__terms, a__sqr, a__add, a__dbl
They will be analysed ascendingly in the following order:
a__terms = a__sqr
a__terms = mark
a__terms = a__add
a__terms = a__dbl
a__sqr = mark
a__sqr = a__add
a__sqr = a__dbl
mark = a__add
mark = a__dbl
a__add = a__dbl
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__terms.
(15) Obligation:
TRS:
Rules:
a__terms(
N) →
cons(
recip(
a__sqr(
mark(
N))),
terms(
s(
N)))
a__sqr(
0') →
0'a__sqr(
s(
X)) →
s(
a__add(
a__sqr(
mark(
X)),
a__dbl(
mark(
X))))
a__dbl(
0') →
0'a__dbl(
s(
X)) →
s(
s(
a__dbl(
mark(
X))))
a__add(
0',
X) →
mark(
X)
a__add(
s(
X),
Y) →
s(
a__add(
mark(
X),
mark(
Y)))
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
mark(
terms(
X)) →
a__terms(
mark(
X))
mark(
sqr(
X)) →
a__sqr(
mark(
X))
mark(
add(
X1,
X2)) →
a__add(
mark(
X1),
mark(
X2))
mark(
dbl(
X)) →
a__dbl(
mark(
X))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
recip(
X)) →
recip(
mark(
X))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__terms(
X) →
terms(
X)
a__sqr(
X) →
sqr(
X)
a__add(
X1,
X2) →
add(
X1,
X2)
a__dbl(
X) →
dbl(
X)
a__first(
X1,
X2) →
first(
X1,
X2)
Types:
a__terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
cons :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
recip :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
mark :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
s :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
0' :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
nil :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
hole_recip:s:terms:cons:0':nil:first:sqr:add:dbl1_0 :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0 :: Nat → recip:s:terms:cons:0':nil:first:sqr:add:dbl
Lemmas:
mark(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0)) → gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0), rt ∈ Ω(1 + n459110)
Generator Equations:
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(x), 0')
The following defined symbols remain to be analysed:
a__dbl, a__sqr, a__add
They will be analysed ascendingly in the following order:
a__terms = a__sqr
a__terms = mark
a__terms = a__add
a__terms = a__dbl
a__sqr = mark
a__sqr = a__add
a__sqr = a__dbl
mark = a__add
mark = a__dbl
a__add = a__dbl
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__dbl.
(17) Obligation:
TRS:
Rules:
a__terms(
N) →
cons(
recip(
a__sqr(
mark(
N))),
terms(
s(
N)))
a__sqr(
0') →
0'a__sqr(
s(
X)) →
s(
a__add(
a__sqr(
mark(
X)),
a__dbl(
mark(
X))))
a__dbl(
0') →
0'a__dbl(
s(
X)) →
s(
s(
a__dbl(
mark(
X))))
a__add(
0',
X) →
mark(
X)
a__add(
s(
X),
Y) →
s(
a__add(
mark(
X),
mark(
Y)))
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
mark(
terms(
X)) →
a__terms(
mark(
X))
mark(
sqr(
X)) →
a__sqr(
mark(
X))
mark(
add(
X1,
X2)) →
a__add(
mark(
X1),
mark(
X2))
mark(
dbl(
X)) →
a__dbl(
mark(
X))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
recip(
X)) →
recip(
mark(
X))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__terms(
X) →
terms(
X)
a__sqr(
X) →
sqr(
X)
a__add(
X1,
X2) →
add(
X1,
X2)
a__dbl(
X) →
dbl(
X)
a__first(
X1,
X2) →
first(
X1,
X2)
Types:
a__terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
cons :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
recip :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
mark :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
s :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
0' :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
nil :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
hole_recip:s:terms:cons:0':nil:first:sqr:add:dbl1_0 :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0 :: Nat → recip:s:terms:cons:0':nil:first:sqr:add:dbl
Lemmas:
mark(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0)) → gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0), rt ∈ Ω(1 + n459110)
Generator Equations:
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(x), 0')
The following defined symbols remain to be analysed:
a__sqr, a__add
They will be analysed ascendingly in the following order:
a__terms = a__sqr
a__terms = mark
a__terms = a__add
a__terms = a__dbl
a__sqr = mark
a__sqr = a__add
a__sqr = a__dbl
mark = a__add
mark = a__dbl
a__add = a__dbl
(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__sqr.
(19) Obligation:
TRS:
Rules:
a__terms(
N) →
cons(
recip(
a__sqr(
mark(
N))),
terms(
s(
N)))
a__sqr(
0') →
0'a__sqr(
s(
X)) →
s(
a__add(
a__sqr(
mark(
X)),
a__dbl(
mark(
X))))
a__dbl(
0') →
0'a__dbl(
s(
X)) →
s(
s(
a__dbl(
mark(
X))))
a__add(
0',
X) →
mark(
X)
a__add(
s(
X),
Y) →
s(
a__add(
mark(
X),
mark(
Y)))
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
mark(
terms(
X)) →
a__terms(
mark(
X))
mark(
sqr(
X)) →
a__sqr(
mark(
X))
mark(
add(
X1,
X2)) →
a__add(
mark(
X1),
mark(
X2))
mark(
dbl(
X)) →
a__dbl(
mark(
X))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
recip(
X)) →
recip(
mark(
X))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__terms(
X) →
terms(
X)
a__sqr(
X) →
sqr(
X)
a__add(
X1,
X2) →
add(
X1,
X2)
a__dbl(
X) →
dbl(
X)
a__first(
X1,
X2) →
first(
X1,
X2)
Types:
a__terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
cons :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
recip :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
mark :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
s :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
0' :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
nil :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
hole_recip:s:terms:cons:0':nil:first:sqr:add:dbl1_0 :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0 :: Nat → recip:s:terms:cons:0':nil:first:sqr:add:dbl
Lemmas:
mark(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0)) → gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0), rt ∈ Ω(1 + n459110)
Generator Equations:
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(x), 0')
The following defined symbols remain to be analysed:
a__add
They will be analysed ascendingly in the following order:
a__terms = a__sqr
a__terms = mark
a__terms = a__add
a__terms = a__dbl
a__sqr = mark
a__sqr = a__add
a__sqr = a__dbl
mark = a__add
mark = a__dbl
a__add = a__dbl
(20) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol a__add.
(21) Obligation:
TRS:
Rules:
a__terms(
N) →
cons(
recip(
a__sqr(
mark(
N))),
terms(
s(
N)))
a__sqr(
0') →
0'a__sqr(
s(
X)) →
s(
a__add(
a__sqr(
mark(
X)),
a__dbl(
mark(
X))))
a__dbl(
0') →
0'a__dbl(
s(
X)) →
s(
s(
a__dbl(
mark(
X))))
a__add(
0',
X) →
mark(
X)
a__add(
s(
X),
Y) →
s(
a__add(
mark(
X),
mark(
Y)))
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
mark(
terms(
X)) →
a__terms(
mark(
X))
mark(
sqr(
X)) →
a__sqr(
mark(
X))
mark(
add(
X1,
X2)) →
a__add(
mark(
X1),
mark(
X2))
mark(
dbl(
X)) →
a__dbl(
mark(
X))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
recip(
X)) →
recip(
mark(
X))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__terms(
X) →
terms(
X)
a__sqr(
X) →
sqr(
X)
a__add(
X1,
X2) →
add(
X1,
X2)
a__dbl(
X) →
dbl(
X)
a__first(
X1,
X2) →
first(
X1,
X2)
Types:
a__terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
cons :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
recip :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
mark :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
s :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
0' :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
nil :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
hole_recip:s:terms:cons:0':nil:first:sqr:add:dbl1_0 :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0 :: Nat → recip:s:terms:cons:0':nil:first:sqr:add:dbl
Lemmas:
mark(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0)) → gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0), rt ∈ Ω(1 + n459110)
Generator Equations:
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(x), 0')
No more defined symbols left to analyse.
(22) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0)) → gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0), rt ∈ Ω(1 + n459110)
(23) BOUNDS(n^1, INF)
(24) Obligation:
TRS:
Rules:
a__terms(
N) →
cons(
recip(
a__sqr(
mark(
N))),
terms(
s(
N)))
a__sqr(
0') →
0'a__sqr(
s(
X)) →
s(
a__add(
a__sqr(
mark(
X)),
a__dbl(
mark(
X))))
a__dbl(
0') →
0'a__dbl(
s(
X)) →
s(
s(
a__dbl(
mark(
X))))
a__add(
0',
X) →
mark(
X)
a__add(
s(
X),
Y) →
s(
a__add(
mark(
X),
mark(
Y)))
a__first(
0',
X) →
nila__first(
s(
X),
cons(
Y,
Z)) →
cons(
mark(
Y),
first(
X,
Z))
mark(
terms(
X)) →
a__terms(
mark(
X))
mark(
sqr(
X)) →
a__sqr(
mark(
X))
mark(
add(
X1,
X2)) →
a__add(
mark(
X1),
mark(
X2))
mark(
dbl(
X)) →
a__dbl(
mark(
X))
mark(
first(
X1,
X2)) →
a__first(
mark(
X1),
mark(
X2))
mark(
cons(
X1,
X2)) →
cons(
mark(
X1),
X2)
mark(
recip(
X)) →
recip(
mark(
X))
mark(
s(
X)) →
s(
mark(
X))
mark(
0') →
0'mark(
nil) →
nila__terms(
X) →
terms(
X)
a__sqr(
X) →
sqr(
X)
a__add(
X1,
X2) →
add(
X1,
X2)
a__dbl(
X) →
dbl(
X)
a__first(
X1,
X2) →
first(
X1,
X2)
Types:
a__terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
cons :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
recip :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
mark :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
terms :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
s :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
0' :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
a__first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
nil :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
first :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
sqr :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
add :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
dbl :: recip:s:terms:cons:0':nil:first:sqr:add:dbl → recip:s:terms:cons:0':nil:first:sqr:add:dbl
hole_recip:s:terms:cons:0':nil:first:sqr:add:dbl1_0 :: recip:s:terms:cons:0':nil:first:sqr:add:dbl
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0 :: Nat → recip:s:terms:cons:0':nil:first:sqr:add:dbl
Lemmas:
mark(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0)) → gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0), rt ∈ Ω(1 + n459110)
Generator Equations:
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(0) ⇔ 0'
gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(+(x, 1)) ⇔ cons(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(x), 0')
No more defined symbols left to analyse.
(25) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
mark(gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0)) → gen_recip:s:terms:cons:0':nil:first:sqr:add:dbl2_0(n45911_0), rt ∈ Ω(1 + n459110)
(26) BOUNDS(n^1, INF)